Android基础探究之HandlerThread学习

对android中的HandlerThread实现原理进行深入的学习

发布日期 2019-03-17

HandlerThread作为子线程管理常用类,他自带封装的Looper处理Message,可以说是十分实用。子线程调度任务,方便我们在子线程中做更多的花样。

前言

HandlerThread内部实现很简单,主要用在需要进行子线程调度任务的时候创建,但是想要完善熟悉原理,你必须熟悉Handler的内部原理实现。

  1. HandlerThread的用法

  2. HandlerThread内部原理

HandlerThread用法

1.创建使用

  • 创建HandlerThread,HandlerThread其实就是继承的Thread类

  • 将HandlerThread的looper绑定到Handler

      //创建HandlerThread
      mHandlerThread = new HandlerThread("handlerThread-test");
      mHandlerThread.start();
      //将HandlerThread的looper绑定到Handler
      mHandler = new Handler(mHandlerThread.getLooper(), new Handler.Callback() {
             @Override
             public boolean handleMessage(Message msg) {
                      switch (msg.what) {
                               case DELAY_1000:
                                        String str = (String) msg.obj;
                                        Log.d("handlerThread-test", "looper : DELAY_1000 " + str + "   处理线程:" + Thread.currentThread().getName());
                                        break;
                               case DELAY_2000:
                                        String str1 = (String) msg.obj;
                                        Log.d("handlerThread-test", "looper : DELAY_2000 " + str1 + "   处理线程:" + Thread.currentThread().getName());
                                        break;
                               case DELAY_3000:
                                        String str2 = (String) msg.obj;
                                        Log.d("handlerThread-test", "looper : DELAY_3000 " + str2 + "   处理线程:" + Thread.currentThread().getName());
                                        break;
                               case DELAY_4000:
                                        String str3 = (String) msg.obj;
                                        Log.d("handlerThread-test", "looper : DELAY_4000 " + str3 + "   处理线程:" + Thread.currentThread().getName());
                                        break;
                      }
                      return false;
             }
      });
    

2.测试

  • 在不同线程调度使用

      //测试
      new Thread(new Runnable() {
             @Override
             public void run() {
                      try {
                               Thread.sleep(1000);
                      } catch (InterruptedException e) {
                               e.printStackTrace();
                      }
                      asyncMessage(DELAY_1000, 0, "在子线程延时1s发送  调用线程:" + Thread.currentThread().getName());
             }
      }).start();
      asyncMessage(DELAY_2000, 2000, "在主线程延时2s发送  调用线程:" + Thread.currentThread().getName());
      mHandler.post(new Runnable() {
             @Override
             public void run() {
                      try {
                               Thread.sleep(3000);
                      } catch (InterruptedException e) {
                               e.printStackTrace();
                      }
                      asyncMessage(DELAY_3000, 0, "在post Runnable中sleep 3s  调用线程:" + Thread.currentThread().getName());
                      asyncMessage(DELAY_4000, 1000, "在DELAY_3000后延时1s发送  调用线程:" + Thread.currentThread().getName());
             }
      });
    
       private void asyncMessage(int what, int delay, String s) {
                Message message = mHandler.obtainMessage();
                message.what = what;
                message.obj = s;
                mHandler.sendMessageDelayed(message, delay);
       }
    
  • 结果:结果可以看出通过Handler对消息调度的处理,我们能在不同线程间进行通讯,并最终在HandlerThread异步处理

      handlerThread-test: looper : DELAY_1000 在子线程延时1s发送  调用线程:Thread-5   处理线程:handlerThread-test
      handlerThread-test: looper : DELAY_2000 在主线程延时2s发送  调用线程:main   处理线程:handlerThread-test
      handlerThread-test: looper : DELAY_3000 在post Runnable中sleep 3s  调用线程:handlerThread-test   处理线程:handlerThread-test
      handlerThread-test: looper : DELAY_4000 在DELAY_3000后延时1s发送  调用线程:handlerThread-test   处理线程:handlerThread-test
    

3.退出

private void threadDestory() {	   
      if (mHandlerThread != null) {
               mHandlerThread.quitSafely();
               mHandlerThread = null;
      }
}

HandlerThread源码分析

查看HandlerThread内部源码,会发现,其实就只有一点代码,接下来一起分析吧

1. 构造函数中指定线程等级

	 /**
     * Standard priority of application threads.
     * Use with {@link #setThreadPriority(int)} and
     * {@link #setThreadPriority(int, int)}, <b>not</b> with the normal
     * {@link java.lang.Thread} class.
     */
    public static final int THREAD_PRIORITY_DEFAULT = 0;
	
	...

	public HandlerThread(String name) {
		super(name);
		mPriority = Process.THREAD_PRIORITY_DEFAULT;
	}

2. Run方法中初始化looper

	* 并调用	onLooperPrepared(looper执行前执行,用于处理一些准备工作)
	*  Looper.myLooper();绑定当前线程Looper轮询器
	*  Looper.loop(); 开始轮询消息

	 protected void onLooperPrepared() {
    }

    @Override
    public void run() {
        mTid = Process.myTid();
        Looper.prepare();
        synchronized (this) {
            mLooper = Looper.myLooper();
            notifyAll();
        }
        Process.setThreadPriority(mPriority);
        onLooperPrepared();
        Looper.loop();
        mTid = -1;
    }

3. getLooper获取当前线程的轮询器

	public Looper getLooper() {
	    if (!isAlive()) {
	        return null;
	    }
	    
	    // If the thread has been started, wait until the looper has been created.
	    synchronized (this) {
	        while (isAlive() && mLooper == null) {
	            try {
	                wait();
	            } catch (InterruptedException e) {
	            }
	        }
	    }
	    return mLooper;
	}

4. 退出轮询,还记得Handler源码剖析里说的,Looper quit时会清理MessageQueue里面所有的消息

	public boolean quit() {
		Looper looper = getLooper();
		if (looper != null) {
		    looper.quit();
		    return true;
		}
		return false;
	}

	public boolean quitSafely() {
		Looper looper = getLooper();
		if (looper != null) {
		looper.quitSafely();
		return true;
		}
		return false;
	}